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Abstract—This paper presents an adjoint approach, derived from the reciprocal theorem, for the
sensitivity analysis of lincar dynamic thermoclastic systems. The variation of a general response
functional is expressed in explicit form with respect to variations of the design ficlds which consist
of the material properties, applied loads, prescribed boundary, initial conditions, and the structural
shape. The functional is dependent on these design quantities as well as the following implicity
defined response fields : displacement, temperature, stress, strain, heat flux, temperature gradicnt,
reaction forces, and reaction surface flux. The formulation incorporates the reciprocal relation
between variations of the real system design and respoase ficlds and an adjoint state. Here, con-
volution is employed in licu of time mappings used in other transient adjoint sensitivity derivations.
Specializations of the formulation to uncoupled, combined quasi-static uncoupled, and steady-state
thermoclasticity are also presented. The finite clement method is used to demonstrate the application
of the formulation to a problem in automobile engine design.

[ INTRODUCTION

One can define a general performance functional to characterize a'system in terms of explicit
design ficlds and implicit response fields. Design sensitivity analysis determines an explicit
relutionship between the variation of the design fields and the resulting variation in the
performance functional. For a dynamie thermoclastic system, the explicit quantities in the
response functional definition are the material propertics, applied loads, prescribed bound-
ary conditions, initial conditions, and the structural shape: while the implicit quantitics
include displacement, temperature, strain, temperature gradient, stress, heat flux vector,
reaction force, and reaction surface flux fields. The design quantities and an initial-boun-
dary-value problem governing the dynamic thermoelastic system implicitly determine these
latter ficlds. Typically, the performance functional characterizes one or more design criteria
for the system. For example, the functional might describe the maximum stress, mean stress,
or stress amplitude at a point in the body during a load cycle, or the temperature and its
gradient in a region of the body.

Design sensitivity analysis provides valuable information throughout the design
process. When incorporated in a Taylor series expansion, the sensitivitics estimate the
performance of modified designs without additional analyses. Sensitivities are also integral
parts of optimal design algorithms (Vanderplaats, 1984), identification studies (Flanigan,
1987), reliability analyses (Ang and Tang, 1975), and inverse problems (Beck ¢f «l., 1985).

Design sensitivity analysis for elastic systems has been a subject of considerable interest
during the past decade. For an extensive list of references sece Olhofl and Taylor (1983).
Haftka and Grandhi (1986}, Chot et «/l. (1988) and Tortorelli ¢t al. (1990). More recently.
several papers appeared in which sensitivities for thermoelastic systems are derived. Dems
and Mroz (1987) used an adjoint approach and direct differentiation to derive the design
sensitivities for an uncoupled dynamic, thermoelastic system. They used a stress constitutive
model which accommodated nonlinecar elastic dependencies on strain and temperature.
A linear isotropic model described the thermal constitutive relationship. They presented
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sensitivities for a general performance functional, dependent on strain. displacement, tem-
perature. material properties, applied loads. and shape. Dems and Mroz used the material
derivative concept {Haug er af.. 1986) to derive shupe sensitivities. Meric (1986) derived
the design sensitivities for linear, isotropic. steady-state thermoclastic systems using the
Lagrange multiplier method (Belegundu, 1985). In this formulation, the design functional
is dependent on stress, strain. heat flux. displacement. temperature. reaction forces, reaction
surface flux, applied loads. and prescribed boundary conditions. Meric (1988) obtained
shape sensitivities for dynamically-loaded. nonlocal thermocelastic solids using the Lagrange
multiplier and material derivative methods. Shape sensitivities for nonlinear. dynamic,
uncoupled thermoelastic systems are presented in Tortorelli ¢f af. (1989).

Direct differentiation sensitivity analysis methods require the solution of a distinct
pseudo problem to determine the derivatives of the response tields with respect to each
design parameter. The chain rule is then applied to the response derivatives to evaluate the
sensitivities of the performance functionals. In the adjoint method. the sensitivities are
evaluated directly after an adjoint problem is solved for cach functional. Thus, if the number
of design parameters exceeds the number of performance functionals, then the adjoint
method 1s preferred because it requires fewer solutions. If the number of performance
functionals is large or the sensitivities of the complete response fields are required, then the
direet differentiation approach is preferred. This puper pursues the adjeint approach.

The following three sections present the explicit sensitivity analysis for a general
performance functional defined over a dynamic thermoclastic system. The sensitivity for-
mulation uses reciprocity between load and response vanations of the real foad system and
load adjoint system (Dems and Mroz, 1983). The convolution (Tortorelh ¢f af.. 1990)
replaces time mappings used in previous transient adjoint sensitivity analyses (Tortorelh
and Huaber, 1989), Domain parameterization (Haber, 1987 Phelan and Haber, 1988), an
alternative to the material derivative method, s used to derive explicit sensttivities with
respect to shape variations, This methodology offers an alternative to previous adjoint
sensitivity formulations and extends them by considering the Tully-coupled problem. Sen-
sttivities for the uncoupled theory, combined quasi-static uncoupled theory, and steady-
state theory are given in Section 5. In Section 6, a linite clement implementation of the
formulation tllustrates the application of the methodology to automobile engine design.

20 SENSITIVITY PROBLEM AND GOVERNING BQUATIONS

Consider the general performance functional which characterizes some design criterion
of a dynamic thermoclastic system

(= j LJV S B, S, 0 9.4, Counp. Koo M, 04.0b, ry de
4 #

+j gl s g i, )da} de. (D
' H

The response ficlds consist of the displacement vector u(x, 1), infinitesimal strain tensor
E{x. 7). Cauchy stress tensor S(x, 1), relative temperature 3(x, 1), temperature gradient
g(x. 7). heat flux vector q(x, t). surface traction s(x, r), and surface flux ¢'(x. 7). The
symmetric clasticity tensor C(x), density p(x), symmetric conductivity tensor K(x), specific
heat o(x). symmetric stress-temperature tensor M(x), fixed reference temperature §4(x),
body force b(x. r), heat supply r(x. 1), convection cocflicient i(x), and sink temperature
d ., (x. 1) arc all explicit design fields.

The absolute temperature 9(x, 1) = 3+, is often used to characterize the thermal
response in eqn (1) but as seen in the following, it is more convenicent to use 3. 1 is the
independent time variable ; 71s the terminal time in the analysis interval {0, ] and x denotes

+ Subscripts represent components in a Cartesian coordinate system and the summation convention is used.
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the position vector. All quantities are defined in the body B or its bounding surface ¢ B (with
outward unit normal vector n) and are assumed smooth enough to justify the operations
performed. de and da represent differential elements in B and ¢B. Here. G is assumed to be
differentiable with respect to the design; in practice this assumption is not always met
(Haug er al., 1986). Although G is defined in integral form, localized performance criteria
over the spatial and or time domains can be obtained by incorporating an appropriate
weighting function.

The response of the system is implicity governed by the design and the mixed boundary-
initial-value problem of thermoelasticity. The standard forms of the equation of motion and
the energy balance equation are replaced in the following by the convolution expressions. (2)
and (3). following a development by Carlson (1972). The nonstandard forms are introduced
because they lead to a reciprocal theorem that is used to define the adjoint system in Section
3 If ¢ and ¢ are scalar functions defined on B x [0.r]. then the convolution operator is
defined as ¢ *(x. 1) = | d(x. 1~ W (x.7)df. The convolution has the following properties
{(see Carlson, {972, for a more detailed discussion): (D ¢y = ¢+ P . (i} ($*yY)rw ==
Wy =dxfxw (i) dx{Y+w) =P Y+ *w. (iv) if §is smooth in time, then P+ =
G+ P, 0np. We define the generalized time and unit functions as i(x.t) = t; and
1(xv. 1) = 1. Then the thermoelastic system equations are (Carlson, 1972):

i*S, ,+A8, =pu, in Bx[0.1] 2)
—Ixg, +A2+0,ME, =3 in Bx[0,¢] {3
S, = Coubu+3M, in Bx[0,1] (4)
¢ = —K,qy, in Bx[01] {3
E,= Y, +n,,) in Bx[0,1] {6)
g, =39, in Bx[0,1] (7)

s, =81 on 0Bx[0,1] %)

g =qn on ABx[0.1] 9)

u, =ul on A, x[0,¢] (10

s, =37 on A x[0,4] (h
d=3" on A,;x[0,7] (12)

g =¢" on A x[0.1] (13)

¢ =M3-3,) on A.x[0.1] (14

In the above (), = & )/dy,: and symmetry of the stress tensor is assumed. The pseudo
body force A(x, 1), and pseudo heat supply A(x, 1), are defined respectively by :

By =i b4 plul+1el) (135)

A =1sr+c! "——()(,M,,E,(:. (16)

The functions u®(x). ¥*(x). 3°(x). and E"(x) represent the initial displacement. velocity.
temperature difference. and strain ficlds, respectively. These quantities are treated as design

ficlds since they are specified explicitly in the analysis. A, and A, are complementary
subsurfaces of “Bas are 4, A4, and A.. 4, and A, correspond to surfaces with prescribed
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displacement u”(x. 1), traction s”(x. 1) 4,. 4,. and A have prescribed temperature differ-
ence J7(x, 1), surface flux ¢”(x. 1) and convection conditions. The relationship between the
locations of surfaces A4, and A, to surfaces 4,. A,. and A is arbitrary. Since v”, s”. 3" and
¢’ are prescribed, they are also treated as design quantities.

We now show that eqn (2) must hold for a dynamic system governed by the equations
of motion with initial displacements. u’(x). and velocities. v*(x). We take the convolution
of the standard motion equation, S, ,+ A, = i, and then integrate the right-hand side by
parts: i (S, ,+b) = i=(p) = p [, (t—1)i(r)dr = pu,— p[tr) — 1] Combining this result
with eqn (15) we recover eqn (2). We can demonstrate the converse result. that if eqn (2)
is satisfied then the standard form of the equation of motion must be satisfied, by differ-
entiating eqn (2) twice with respect to t. Convolution property {(iv) is used in the first
differentiation. Thus, we can state that the equation of motion is satisfied if and only if eqn
(2) is satistied. Similar arguments can be used to relate eqn (3) to the standard form of the
energy balance equation (in this case we only differentiate once with respect to 7).

The objective of a sensitivity analysis is to derive a relation for 3G in which only explicit
variations of the design fields are present. In Section 3. the material properties (C, p. K. ¢,
M. #,. and &) and load data (b, r, u”. 8", 37, ¢, 3, u". ¥", EY, and 3") are varied with the
shape held fixed; and an explicit expression 3G, is derived. In Section 4. the material
properties and load duta are fixed while the shape is varied ; and an explicit shape sensitivity
expression 3G, . is derived. The total variation 0G is evaluated from the sum 6G, + 0G,.

3. VARIATIONS OF MATERIAL PROPERTIES AND LOAD DATA

The direct expression for 0G, is
()‘(l‘“ = J\ [: j ( /( ‘”“‘s(‘//k/ + ./;1'(SI)J.I:A',,()'A'II + /r (S(‘ + ’ \’”().A([l/ + ./:('H“‘S(ﬂul\/’b/:p ()'[)
4 n

+ L0+ f1.0b + f.0r) dr+j g eoul’ (l({+J Gotds? da
. '\

]1

~

+1 g.aedir du+J‘ 4. 04" du+ J~ (4400 +g., 03, )du
t 4, 2,

~
+ (/:“‘(5“, + 4/:1'.'“6[;11 + ./:4\‘”().55; + ./;l.’l().‘() + /:q,()‘gl + ‘/:‘;,‘).‘I,) dF
i

-~

+| g.05,da+ J-

J, 4

g, On, da+ J 4..0¢" da

ty

P

+| g.0%da +J

o, A

'R da] dr (17

where a, = Ca/db.

The evaluation of this expression is not straightforwird due to the presence of the
implicit response variations (du, 83, JE, dg, 3S. dq. ds. and d¢*) which must satisty egqns
{2)-(16) for the varied design. That is, the following equations must hold :

iedS, ,+048, =dpu,+pdu, in Bx[0.1] (18)
— 1 #3q,,+ 08+ 00, M, E;+0,0M E,+ 0, M OE,; = 6cI+c63 in Bx[0.¢] (19)

(55‘., = (SC,".“EW"}" C,«,HO-EH+(53ﬂf,, + S{Sﬂf,, in 8 X {0. c'] {20)
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dq; = —0K,9,—K,09, in Bx[0.¢] h
OF, = }(0u,;+0u,,) in Bx[0,1] (22
¥g. = 03, in Bx[0,¢] (23)
ds, =0S5,n, on c¢Bx[0.1] (24
oq¢ =dqn, on Bx{0.¢] (25)
ou, =0’ on A,x[0,1] (26)
05, =0s7 on A, x[0.7] 2N
03 =03" on A, x[0.1] (28)
o =9dq, on A,x[0.¢] (29)
S = h(B—3.)+h(03—383,) on Aqx[0.1] (30)
where
3.4, = i« 3bh, +p(u + 1))y + p(Sul + 15 (31)
SA = 1 adr+8c8"+ 85" = 50,M,E? —0,6M,E) —0,M,SE. (32)

In sensitivity analysis of elliptic problems, such as static elasticity, reciprocal theorems
or mutual energy principles that result from the sclf-adjoint nature of the governing equa-
tions can be invoked to climinate the implicit response variations (Phelan and Haber, 1989).
In these methods, the reciprocal theorem relates the load and response ficlds of a fictitious
adjoint system to the design and response variations of the real system. Urfortunately, the
standard forms of the equation of motion and the energy balance equations for the transient
thermoclastic problem are not sclf-adjoint; so they do not lead directly to weak-form
reciprocal relations. Now the utility of the nonstandard forms of egns (2) and (3) becomes
apparent : despite the lack of self-adjoint operators in the standard equations, a relationship
of reciprocal form can be generated (Carlson, 1972) because of the symmetry of the
convolution operator ; and we can use the reciprocal relation to eliminate the implicit design
variations in the sensitivity expression. Further, the initial conditions are now incorporated
in the formulation, and their variations can be considered in the sensitivity formulation.

It is not necessary to use the convolution equations in solving the real and adjoint
systems —their key function here is to facilitate the formulation of the adjoint system and
the definition of the adjoint data. In fact, we have used the standard equations and
conventionil time integration methods in formulating our numerical solution algorithms
for the real and adjoint problems (see Section 6).

The adjoint system cquations are presented next. A tilde denotes an adjoint load or
response quantity —the only fields that differ between the real and adjoint systems. Note
that the adjoint system is defined on the same space-time domain as the real system and
that the two systems share the same matcerial properties. In fact, the adjoint and the real
system equations are of necarly the same form, except for the introduction of applied stress,
strain, temperature gradient and heat flux ficlds in the adjoint equations (to obtain identical
system equations, the applied terms could be formally introduced to the real system equa-
tions and set to zero). A reciprocal theorem is introduced below and a method is presented
to determine the adjoint load data needed to relate the implicit response variations of the
real system to the response of the adjoint system. The adjoint system equations are:
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i»S, +4, =pi in Bx[0.1] (33)
—tsg, +A+0,ME, =cF in Bx[0.1] (34)
S, = CudEy—EN+S!'+3M, in Bx[0.1] (35)
G =—-K/(§,—g)+§' in Bx[0.1] (36)
E, =\, +4a,) in Bx[0.1] (37)
Gg.=93, in Bx[0.1] (38)

5 =38,n on ¢&Bx[0.1] (39)

g =qgn on ¢Bx[0,1] (40)
g,=4a" on A, x[0.1] 41

5= on A, x[0.1] (42)

F=0 on A,x][0.1] (43)

G =4q, on A, ,x{0.1] (44)

G =mF-0,) on A.x[0,1] (45)

where the adjoint load data consist of the pscudo body force A(x, 1), pseudo heat supply
A(x, 7), applicd stress tensor S*(x, 1), applicd strain tensor F(x, 1), applied temperature
gradient g'(x, 1), applied heat flux vector @'(x, t), prescribed displacement @(x. t). pre-
seribed surface traction §7(x, ), prescribed relative temperature J7(x, t), prescribed surface
flux §”(x, ), and sink temperature §, (x, 7). The applied terms are, in some ways, analogous
10 initial stress or strain terms common to elasticity problems. However, the applied terms
are time-dependent and need not be symmetric. These data are chosen to annihilate the
integrands in eqn (17) with implicit response variations, as explained below.,

Carlson (1972) presented a reciprocal theorem valid for dynamic thermoelastic systems.
In the present formulation, this theorem is modified to relate variations in the real system
[egqns (18)-(32)] to their counterparts in the adjoint system [egns (33)-(45)].

Theorem |, Suppose a thermoelastic system is subjected to two sepurate dvnamic loud
systems, the real and adjoint. Next, suppose the material properties and load data of the real
system are varied, C - C+0C, p—p+0p, K= K+0K, ¢ - c+dc, M= M+0M. 8, —
0o+00y. b =>b+db. r—r+dr,u” - u"+0u”, 8" = s"+35", 3" = P+ ¢" - ¢"+0p” h —
h+0h 3, =3, +09, u" - u"+ou”, v - v'+6v". 3" = 3"+ 83", and E* — E"+ 0E". Then

f"‘f E.; * CudE dr— (}l" * | *f g.* K, dg,dr
it 8

9

=ix* ‘SE'I * Cl/k/i;:kl de— '{A * 1 ‘S.{/: * A'r/.(il dr (46)
L4 () A

0

and
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i j &, ds, da-&-[ i« (04 —0pu,)dr—ix J. E',, = (0C,  Eq+30M,) dr
B B B

+ Lale| Gaoqgdat —u| Fe(3cd—04—00,M,E,)dr
0 -2 0o Js

8 4

i - . L. ~
+—*xlx| g*x0K,g, dr=1is| §*ouda+ | 4 »du dr
¢ 8 8 8

0

o o~ . i . i ~ .
+is | (E1C.u—SD*0Egde+ —xls | §g*03da— —* | #x03dr
B 9() ] 00 g

- (—;--* 1= J. (K, +q')*dg,de. 7
B

0

The symmetry of C, K. and the convolution verify the first equality. Several applications
of the divergence theorem, symmetry of C. K, M. and the convolution, and eqns (18)-(43)
transform the first equality to the second.

This theorem is now used to climinate the integrands which contain implicit variations
in 0G,,. First, the implicit and explicit variations in cqn (47) are isolated ;

~ . i Cee
i*j‘ ENOC, i » B, dr— 0 * 1 *J gOK, = g} dr
i3 0 #

is added to cach side ; and eqns (18) (45) are substituted to give

~

—i* j Seouldatin J‘ 1, * 08" du+‘{ 1, % (3.4, —dpuYdr — i x f (£, =350,
4, 4, ] #

roog o g i . nin i -
+(E,~EN0C  E)de— s lx | g0 dut —»1x| Fedg"da
' ’ / { f
Uu 1, ()n 4,

i - i -
+ - xlx FxOh(3=3,)=hd3 Yda+ L x| Fx(dch—d4~00,M, E,
UU A, 0() i

—0u0M, E ) dr+ ol *f (§.—g')* oK g, dv = —l*j- i’ * 0, da
t

v 1 A

"

+i*f ST % du, da+j- A, *du, d:‘+i*J (E}%0S,~81+3E,)dr
1, " 8

i - . i - ] ~ .
— -2l ] Fadg'da+ -+ lx ] §'xd3du— Catx| Tehodda
o 4, 0y A, 8y 4

i ~ i . .
- -x j AxdFder— _+lx J (=g »dq,+G' «3¢,) de. {(48)
{)n fi 0(} #

Equation (48) is differentinted twice with respect to time to relate the right-hand side
of this equation to the integrands that contain response variations in G,
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—J 5, = 0uf da+f i, * osf da+J‘ (&, % (b, — 0pid) + it x 0 pOU + ] s pOL]) At
4, A, B

~ . - . . l ) ] ~ .
~f (E,»30M,;+(E,—E))*0C yE)dv— — = ( G *»03 da+ — tf 3 *dq" da
8 00 vy 00 A,

| . . 1 ~ . . .
+ —=* J Fx(0M(3=3.)-hd3,)da+ ~j 3 x (e —04—00,M,E,
01) 1 0() B

il * Js, da+f 57 xou, da

1,

. l -
-—()(,()A[,,E,,)dl"‘l- ()—*J- (£7r—§:4) * ()A,, !]/ dl. = _J‘
8

0 4

+J (/;l * (51(, + ﬁ:)p‘il}c(t+F:)/"s“:ln.n)) dl+f (EJ * (jS,/- _SI: * ().El/) dl‘
B B

1 ~ 1 1 ~ 1 -
— | I"*d¢°da+ x| " x03da— —= | Oxhodda— 1 A+d3dr
Ay 0 1, 0 1 0 8

0“ 9 0 i}
| S48 =

— x| (=g *0q,+q' *dg,)dr (49)
Ull R

where (1) =d( )/drand () = d*( )/de>
The right-hand side of this cquation is equated to the integrands which contain implicit
variations in 3G, to define the adjoint data as:

b t=1) = fulun in Bx[0.1] (50)
Soxa—t)= = [, loo in Bx[0,1] (51)
ENx.t=0) = [y | in Bx[01] (52)
A t=1) = =00 f4lne in Bx[0.1] (53)
Peglxit=1) = =0,/ o in Bx[0.1] (54)
Legi(x.t—=1) = 0of Ly in Bx[0.1] (55)
(X, 1 —=1) = ~¢ .|y on A, x[01] (56)
(X t=1) =g, lny on A x[0,1] (57)
Lo 37X, t=1) = —0ug.ple ON Ay x[0.1] (58)
Lsg"(x.t—1) = 04¢ ilpey On A, x[0.1] (59)
13, (x.t=1) = —(;;—lg_,,lu_,, on  Acx[0.1) (60)
i@"=0 in B (61)

=0 in B. (62)

The left-hand side of eqn (49) replaces the integrands in dG, which contain variations
of the response ficlds and the explicit sensitivity is obtained :
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6Gp = J‘ (J (fc,/”éC,,-k/'}‘f‘,ép‘l'fx,f5K,,+f‘-(5£'+fu”(5AV,,
{ 8

}

N
+ f,0800+ f,0h,+ f,0r) dl‘+J g..roul da+J ¢ 4087 du
‘\

1,

+J g0 du+J‘ g.,0g" du+J (g.0h+g., 03, )du)dr
4, IJ A

_j S xoul d(l+J i, x Os” d"+J (€, % (0h, — dpii,)
i, L 5

”»

+ ‘-;. lanpou + l?,l"_,,pdl',n) de - J (E,*30M,
B

] [H]

. s . l . 1 ~
+(E,—E}*0C,,E,) dr — 0 * j G *03" da+ i * J 3 0y" du
M, 1,

1 ~ . . | ~ . .
NE— B (O3 =3,)=hd3 . Yda+ | Fx(0cH -2
‘)n i ” R

0

. . 1 <.
=00, M E, —0,0M E,)de + n *J. (§.—d.") * 0K, g, dr. (63)
Q0 H

Note that the solution to the adjoint problem must be available to render egn (63)
explicit. [t the finite element method is used to evaluate the real response, then the adjoint
response cian be computed in an efficient manncer. At cach time step, the adjoint load vector,
defined by eqns (50) (62) is assembled and back-substituted into the decomposed stiftness
matrix that was used for the real analysis. Ifunitorm time steps are used for the real analysis,
then only one stiffness matrix decomposition need be performed to evaluate both the real
and adjoint responses (Tortorelli and Haber, 1989).

4. VARIATIONS OF SHAPE

To formulate explicit shupe sensitivities domain parameterization is used (Haber,
1987 ; Phelan and Haber, 1989). A reference contiguration 87, described in an independent
reference coordinate system with position vector r, is introducd such that

x(r):B "> B (64)

where x is i deformation-like mapping. The configuration B is defined by the image x(B")
and the variants of this configuration by X(87) + 0x(8"). This method for obtaining shape
sensitivities was also proposed by Cea (1981a.b). If the isoparametrie finite clement method
is used to perform the real analysis, then ll\w isoparametric mapping is a natural choice to
locally define x. Over cach clement, x = Y 3, #, where i, is the coordinate vector of the
21
2th node in the clement, #, is the corresponding shape function, and V is the number of
nodes in the element. With this mapping. the sensitivities are expressed with respect to
variations of the node coordinates which serve as the fundamental design parameters.
Typically, the coordinates are linked to a smaller number of global geometric design
parameters (c.g. Braibant and Fleury, 1984).
The next step in the derivation is to rewrite all the field quantitics as functions of ¢
over the reference domain. For example, b = b(r.7) on 8" x [0, t}. G is transformed to the
reference configuration by the change of variable theorem (Hildebrand. 1976) :
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G = J- [ J' f(un E)/t S:h 9.9.‘ q.- C,,/“'. P, K,,-. C, Al[’l" 9()_[)“ r)Jdl,r
1} B

+J‘ g(u,.s,.3,({‘./1.3L)Kda’:|dr (65)
s

where J = de/de” is the determinant of the Jacobian tensor J with components J, = x,,;
(),=¢()ict,: and K = da/dd’ is a surface area metric (Haug er al., 1986 Tortorelli ¢r
al.. 1990). de" and do” are differential elements of 8" and ¢8".

A variation Jx gives

!
oG, = '[ l:j (./:u,(sun+j:E”5Elj+.f:.§',/651j+j:359+j:q,(5g:+j:u,6qc)-, de’
0 B

+J‘ g.,.,és,l\’da’-i-J‘ g‘,,'éu,ls'da'+J‘ 9.,0¢'K dc:’+f §.03K dd
L Al 1 o

T

J g.200K da’ +f foJ dr +J‘ goK du’] dr  (66)
L/ 8" o

A

where 0 and OR arc explicit functions of x and its variation ox (Tortorelli ¢7 al., 1990).
Equations (2)-(14) must also be transformed to the reference domain. This s
accomplished by expressing the conservation laws over B”:

‘( A(r.t)] (lt"+i¢j s(r.t)K da" = f pulr, ) de” on [0.1] (67)
n R H

J‘ (A(r, )+ U0 M (e, O)E (v, 1)) de" =] *J. g(r.r)Ndd = 4[ ey de” on [0.¢]
m o '

(68)

and utilizing the divergence theorem, Nanson’s relation (Bathe, 1982), and the chain rule:

#(J,S,.),+#BJ = pud in B x[0.1} (69)

— 1% (q )" )+ AI+O,ME,J =3 in B x[0,1] (70)
S, = CouEat M, in B x[0,1] (1)

q = —K,g, in B x[0,/] (72)

E;= o) +u,,,J') in B x[0,1] (73)

g =38,J." in B x[0.] (74)
sK=J47,'S,n on B x[0.1] (75)
¢K=qJl;'n, on B x[0,1] (76)

u,=u’ on A,x[0,1] (77)

s, =357 on A.x[0,r] (78)

3=9" on A,x[0./] (79)
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g =q" on A,x[01] (80)
g =h(3-3,) on Ay x[0.7]. 8

This transformation is similar to one presented in Tortorelli er al. (1990) for elastodynamic
systems.

If the governing equations and boundary conditions are satisfied in the current design.,
then the variation of eqns (69)-(81) provides equations which ensure satisfaction of these
relations in all neighboring designs. For the case of shape variations, this condition is
expressed as

i* ((S‘IJ/VI‘nl Slm),] +l * (‘Id‘ll:nl SMI)J + ' * (J‘Iu—n'(SSml)./ +‘%I<i‘,
= pou,J+pudJ in B x[0.¢] (82)

- | * (J(IIJJ,;;il).m - l * (qléj‘,mll).m - l * ((II‘I().JI;I-II) m
+ AT+ 0,M,SE, J+0,M,E,00 = c69J+¢35J in B x[0.1] (83)

(55,,‘ = C“kl(SEkl'*‘(;\()[‘/[,l in B’ X [0. ’] (84)
d0¢, = — K, 0y, in B x[0.¢] (85)

($EII = g‘(‘sul.m'ln;[l +‘suj m‘llmI ) + :l'(ul ’N‘).‘I"l[l + u/ m‘).'lmil) in Br X [0' [] (86)

39, = 08 S +0.,00." in B x[0.1] (87)

Os, K+5,0K = 844, S, +J3J,,' S, + 47, 38,0, on OB x[0,1] (88)
S K+ ¢ oK = dqJ),. ' w +q, 007, 1, + ¢, 051, ', on OB x[0,1] (89)
du, =0 on A, x[0,1] (90)

ds, =0 on A x[0,1] o

3 =0 on Ajx[0,¢] (92)

d¢ =0 on A, x[0,1] (93)

d¢' = hd3 on AL x[0,1] 94

where 3J 7' is also an cxplicit function of the current shape and its variation (Tortorelli e
al.. 1989, 1990).

A theorem for shape variations, based on reciprocity and similar to Theorem |, is
constructed from eqns (82)-(94).

Theorem 2. Suppose a thermoelustic system is subjected to two separate dvnamic load

systems, the real and adjoint. Next, suppose the domain of the thermodynamic system is
varied X — x4+ 0x, then

i* J‘ EJ, Cukl * (5uk.m‘,r;ll J dl" —i* l * J‘ g:K:, * (s'g,m ‘,n;/I ', dl"
8" 8

== J‘ (5“,»,,,.,,,;,‘ Cukl * Ek,j de" —i=1 = J‘
re

]

] 03 I K, xg,Jde” (93)

and
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I j (05, K+350K)»ii,dd" —i = J (8JJ,'S,+JoJ'S,) =4, ,dt”
e 5

—J‘ (pu,— AB) « 0 dv" — i« J‘
-

B

u, ,,,./(3./,;,' C‘}“ * Ek;-/ de”

0

+ (Ji* 1 *J (¢ OK+ ¢ K) «» Fda — él—t 1 *J‘ (9.0 +q S0y # 0 , dv
57 0 g

+ ()L* J (¢30S —0,M E, 0J—0yM, u, ,,,(SJ,;,l —AOJ) * Jdv
0 8

5 *ou K da’+f

8

{ -1 ~ r :
+0~*l* . 3 w0 Ky g, Jde” =i«

0 o

A, % duJ dt’

0

+ix J (CoiES =Sy »ou, 0 dv" + ()L* 1 *j G * 03K dd
8’ "'B'

] -~ {
! *J Ax03Sde"— -» *J' (K, g +GH =63,/ Jdo. (96)
()ﬂ H ()() B

Proof of this theorem is similar to the verification of Theorem |1, after the appropriate
transformations to the reference configuration have been performed.

The manipulation of eqn (96) to solate implicit and explicit variations, the addition
of

I» f U m* ((‘:;kll?l«|l - S":‘; )().J,,,,| J dl" —ixls f ";vm * (Ku.‘il‘ +‘7;I)‘5~Iml‘ ‘I dl.r
"

I'e

to cach side, the substitution of egns (33)-(45) and (82)-(94), and two time differentiations
yiclds

j s, x 00K dd’ —J‘ (S, *u,,, +§,, xu, )8/, S de’ —f (S, * 1?,,
e " 8

i]

. | ~. 1 ~ .
+(pti,— b)) *11,)J dv" + — *J ¢ *3OKdd — —» f (q*F 4G, *8,)04,,'Jdt"
0( 0B 00 8
l - t
+ 0 j (—¢.*§,+(c3—0,M,E, —A)*3)Jdv" = j [—f a’ = 08, K da’
[} B 0 £l
+J 57 % ou, K du’ +J (b, wSu,+ E3S,~ S5« SE)Jdv
1] "
1 ~ e l o 1 ~
— %] RO Rdd+ | x| G *0IKdd — x| F«hoIKdd
Uu 1 ()u 1, 00 1y
1 - . [ P 1 .
— = AxOBT A= ~x | (—=g'*dq,+G' *0g,)J d” | dt
0() i 00 n

+ J‘ (17:)1)‘5&1'(;.1) + F:“pfsull(x,l))J dl"- (97)
n

If the adjoint data are specified by egns (50)-(62), then the right-hand side of this
expression is equal to the integrands which contain the implicit response variations in 6Gy.
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Thus. the left-hand side of eqn (97) replaces the implicit terms in eqn (66) to give the explicit
sensitivity

3G, = j si-&,éKda’—J. (S %t m+S,*u,,)0/. Jde" — f (S,+E,
8 [ 8’

1 -~ I -
+(pli,— b)) »0)oJ dt" + — *j ¢ *»IKdd — — tj (q,*3 .
00 ’ Hn B

8

+§,% 3,08/ Jde" + 'él— (—l*qg*xg,—(c3—0,M, E, ~R)=* $oJ de
0 J8"

+J [f féldz"ﬁ-'[ géKda’]dr. (9%)
Q B o

Note that the adjoint systems for the evaluation of G, and 0G are the same. thus only
one adjoint problem need be solved.

There are two versions of the material derivative method : the domain and boundary
methods. To compare the above result to the one obtained by using the domain version
of the material derivative method (Haug ef al.. 1986). consider the following mapping
x = r+xV(r) in which the reference configuration coincides with the current real con-
figuration, i.e. B = B'; x is a time-like parameter, and V is a fictitious shape design velocity
field. Ultimately, G is expressed in terms of the explicitly defined field V., which is viewed
as an instantancous velocity field that defines a deformation-like variation of the current
design geometry. At the current design, B = B" and « =0 so J is the identity tensor,
A )ox, =0 )/Cr, and J = K = 1.« is the variation parameter in the expression for x.
Therefore, dx = OV, 8/, = dnV,,. 8J,' = =k V. and oJ = dn ¥/, (Haug er ol., 1986).
K is transformed in a similar manner, Only the normal component of the velocity ficld is
retained in the surface integrals of the material derivative formulation which is presented
in Haug et al. (1986). When applying the finite element method to such formulations,
caution should be exercised. Tangential perturbations of nodes might be required to retain
mesh regularity during a shape design process. In general, these tangential movements will
affect the solution ; therefore, they should be considered in the evaluation of 3G,. The
boundary version of the material derivative method can lead to inaccuracies when
implemented with the finite element method, because it requires the evaluation of response
quantitics over the boundary. Some of these quantities (c.g. stress and strain) are diflicult
10 accurately compute over the boundary (Haug er af., 1986). Nceither the domain version
of the material derivative method nor the present domain parameterization method suffer
this drawback.

5. UNCOUPLED, COMBINED QUASI-STATIC UNCOUPLED, AND STEADY-STATE
PROBLEMS

Sensitivities for the uncoupled, combined quasi-static uncoupled, and steady-state
problems are obtained as specializations of the previous results.

In the uncoupled theory, the §,M, E,; terms and their time derivatives are neglected.
It is also necessary to eliminate the thermo-coupling (the M term) from the adjoint stress
constitutive relation. Equations (46) and (47) become

15 i*J- E, + CabE do—inl tJ. g+ K, 0g,dr
8 8

= |=* itJ OE,; » C,.,k,gudr—-i* i aj dg,* K,g,dv (99)
8 a
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[ =i ‘- i, =0y, du+1 *f u,« (0.4, —opu)dr—1+ l'tj E,, * (0C, i Ey+09M,
B 8 8

o

g* (()(3—6%)(11"'[* | "J. ﬁ,‘éK:,g/dl'
5 g

+30M ydr+ix 1 *J Tadq' datis
8

=lwix J:Hi, * du, da+ | *J;.}?, *0u,de+ 1 » i*L(EJ Cii— Sy x0E, dr
+ixlx J;B(i\ «d3da—i= J;.ini.? de—ixl :J;(K(, g +4") = dg.dr. (100)
Addition of
[ *ix L E} % (0C, Eq+0M,3+M,03) dr—ix |« L g,0K, » ' dr

to cach side, manipulation to isolate implicit and explicit variations, substitution of the
modified forms of eqns (18)-(45). and three time differentiations give

.~

—| §«du du+f a, = 08" da+J (i » ((Sb,-—(5;)1'1',)+17.,Iul,,/)().l‘,0)dl‘
! »

v,

~

- ((1?“ - 1:‘,':) * (3OM,, +0C,  Ei)) de —J g * 03" (111+J T Jd¢” du
" 1, 1,

Y

~

+1 T (O =9,)=hd3,)da+ f (T (3¢ =0r) = 3], c03%) do

B

d'l

* ]
+1 (4, —g'y*3K,g,dv = J [—J ul = s, da+J‘ 3w O, da+f (b, * du,
Jn 0 4, . "

+ [?,,' AR S~,f *»oL,)de ~J Jr x d¢' du +J g"«d3du —J T hd3 da
1 A,

1 " A
-J‘ (F—(E,~ENHM) 33 de —J (=g *3q,+q' *3g) dt'jl dr +J (@ pdit| x.
A n B
+ 0 pdu o — T8, ) de. (101

The adjoint data are again defined to annihilate the response variations in 3G, :

hix.t=1) = f.lua in Bx[0.1] (102)
Six.t=1) = = fylnn in Bx[0.1] (103)
Ej(x.t—1) = Ssloo in Bx[0,1] (104)

FINt~1) = = [3loa H(E,(xt—0) = EX(x.t—1)M,(x) in Bx[0.1]  (105)
glx.t=1) = — f,lno in Bx[0,1] (106)

gUxr=t) = f,lo in Bx[0./] (107)



Sensitivity analysis for coupled thermoelastic systems

W(Xt—1) = ~g,|un on A, x[0.1¢]
X t—T) =gl on A x[0.1]
Fr(xt=1) = —golen on Ay x[0.1]
G (x. t—1) =guln on A, x[0.1]
J. (xt—-1)=— vll;g;,,l“‘,, on Aqx[0.¢]
(x)=0 in B at =0
(x)=0 in B at 1=0

Ix)=0 in B at t=0.
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(108)

(109)

(110)

(1

(112)

(13

(114)

(115)

Special care must be taken in solving the adjoint system because the adjoint strain is present
in the definition of 7. First, the adjoint elastic response (@, E. 8. and §) is determined. Next,
the adjoint strain and the functional definition are used to define the adjoint thermal data

and the adjoint thermal response (3, . §. and §') is determined.

The teft-hand side of cgn (101) replaces the implicit response variations in eqn (17) 10

form the explicit sensitivity :

(561) = J ( J\ (./.‘(',M,dC//kl + j:,ﬁl’ + ./:A‘,,‘SA’U + ]_".5(‘ + j:,\l,,(SA/tll
0 1

+ 0,000+ f10b,+ jf,b'r)dz*-i»J g..ou’ du+J g.4Os! da
RS

“

+J g O da+J~ 4.40¢" da+J\ (g.40h+g, 33,) d::) dr

A, 4, A

- J 3 = ou" da«l—f &, % 08" da+J (i, » (3b; = Opii,) + ii,| Ot
4, 4, #

+ 1w npor?) de — J (E,—E)  30M,+(E;—E}) »5C,uEy) dv
i

R
- G »d3 da+j T% 8q” da +J T (Oh(3—9,)—hd3,)da
RE 4, Ac
+ | T3S =8r=8) 63" =M, F,)dr
Ja
+1 (4. —~4')+K,g, dr.
8

13

The same adjoint system is used to obtain 6G:

(116)
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0G, = ,s;*:?,fi[\'dd"—-i (S, *t, ,+5, *u. ,,,)M,,,,*Jdru-f (S, «E,

Jo# o8 8

~

+pii, =hy i) de+ | ¢ * FOKN dd’ - [ (g, =3,
B 8"

- v

+qx 3,080, T de + [ (—q, %G, +{(cT—r) «85J do” + J { j foJdet
, N

J8 #
+J oK du'} dr. {(1i7)
o

The combined quasi-static uncoupled theory introduces additional simplifications. The
inertial terms are neglected in the motion equations to eliminate the displacement time
derivatives from all equations. Time is no longer a parameter in a steady-state analysis ; $o
all terms which contain time derivatives are omitted and all operations which involve time
integration, dilferentiation, and convolution are dropped.

If & quasi-static or steady-state boundary-value problem is a traction problem, te.
o, =0, then the design functional must be defined to ensure global equilibrium of the
adjoint system. Likewise, for steady-state problems. if A4, = 0 and A = 0. fand ¢ must be
defined to ensure a global energy balance for the adjoint system. Fortunately, such problems
are seldom encountered.

The sensitivity formulations presented in this subsection differ in some respects from
those obtained by Dems (1986) for uncoupled dynamic thermoclasticity and Meric {1986,
1988} for steady-state thermoclasticity, Here, the domain parameterization method is used
to derive shape variations; and the convolution is used rather than a time mapping tor the
transient problem.

These results can be specialized for trunsient or steady-state lincar clasticity or con-
duction problems to obtain sensitivity expressions consistent with those presented in Dems
and Mroz (1983, 1985, Dems (1986), Haber (1987), Mcric (1986}, Phelan and Haber
(1989 and Tortorcell ¢r af. (1989, 1990). In Dems and Mroz (1984, 1987), the material
derivative approach is used to obtain shape sensitivities, rather than domain para-
meterization,

6. EXAMPLE

In this section, design sensitivity caleulations for i thermoclastic system subjected to
transient clastic and thermal loading are presented. The sensitivities are computed using
the adjoint load method presented above, and also using the finite ditference method for
the purpose of verification. The example studics the start-up response of a four-cylinder
automotive engine. Sensitivities are computed for performance functionals corresponding
to displacenment components at selected nodes and the von Mises effective stress at an
clement Gauss point. Sensitivities with respect to variations in the cylinder wall thickness
and the heat transfer coetlicients on the inside (gascous) and the outside (coolant) of the
cylinders are computed.

The simulation uses a two-dimensional model of the engine (see Fig. 1), which consists
of 450 cight-node, 3 x 3 integration, isoparametric quadrifateral elements and 1583 nodes,
Symmetry about the x-axis is invoked and plane-strain elements are used to model the
clastic problem. Node 719 is fixed to prevent rigid body motion. The clastic problem is
modeled as a quasi-static system and the thermal problem is modceled as a fully transient
system.

The start of the power stroke coincides with the zero degree position of the crank. The
gas pressure and the gas temperature inside the cylinders are a function of the crank angle
as shown in Figs 2 and 3, respectively. The temperature of the coolunt on the outside of
the cylinders is assumed to be constant at room temperature (293.16 K) throughout the
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N1 Ni41 N719

Fig. 1. Finite element model of a cross-section of a four-cylinder automotive engine,

engine start-up. The initial temperature of the engine is also room temperature. Convective
boundary conditions are applied to the thermal problem in which the convective coefficients
on the coolant side and the gaseous side are 7040 and 116 W m~* K, respectively. The
operating speed of the engine is 3000 rpm and the cylinder firing order is 1-3-4-2.

The material properties of the current design are those of cast iron: the modulus of elas-
ticity is 103.4 GPa the Poisson’s ratio is 0.25; the thermal conductivity is 290 W m~' K~';
the mass density is 7196.6 kg m~7; the specific heat is 440 J kg~' K~'; and the coefficient
of thermal expansion is 0.0000129 mm~' K",

The sensitivity functionals were defined to represent the distortion of the cylinders and
the stresses in the engine during operation. An analysis was performed for a total time of
0.0525 s {which corresponds to a crack rotation of 945”) with a time step At = 0.000278 s
(corresponding to a crank rotation of §°) to identify the point of maximum von Miscs
cffective stress during the operation of the engine. The analysis showed that the highest
von Mises stress oceurs in element 70 at the Gauss point with parametric coordinates
{~0.7746,0.7746) at time t = 0.000833 s. This time also corresponds to the maximum gas
pressure.

A Dirac delta function located at the critical Gauss point was used to localize the von
Mises stress performance functional for the sensitivity calculation. In addition, the sen-
sitivity of the x-displucements at nodes [ and 141, and the p-displacement at node 73
(which are representative of the distortion of the cylinder) were calculated using functionals
containing Dirac delta functions at the appropriate nodes. It is difficult to incorporate
Dirac delta functions in the time domain in numerical integration schemes. Therefore, an
approximation was used in which the functionals are sampled over a single time step and
the normalized by the length of the step. The performance functionals used in the sensitivity
unalyses are:

Gas Pressure (MPa)

T

270 360 450 540 630 720
Crank Angle (Degree)
Fig. 2. Gas pressure inside a cylinder vs crank angle.

SA§ 27-12-B
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Fig. 3. Gas temperature inside a cylinder vs crank angle.

Ll
G, =Ef fo(x-x,)uldrdr (118)
t, JB
. Py
G, = A}J’ J\O(x—x”)r”dl'dr (119)
f, B
L[
G‘=Ar_[ J5(x-—x,_,,)umdl'dr (120)
t, #
ol ]
G, = ATJ Jf)(x -x,)§, de dr (120
1 #

where x,,, u,. and ¢, refer to the coordinates and the v- and y-displacements of node #; and
J(x —x,)F, refers to the von Mises stress at the Gauss point in clement 70. The time interval
over which the functionals are sampled is given by ¢, and ¢,, where 1, = 0.000556 s and
t, = 0.0008333 5. The fraction (1/Ar) is the normalization factor for this interval. The values
of the functionals are —0.02405 mm, 0.01885 mm, ~0.00779 mn, and 45.56755 N mm ™ ~,
respectively.

The adjoint loads for cach of these functionals are defined through eqns (102)-(115).
For example, for functional G|, the adjoint load set for the clastic analysis is given by :

S(x—x,)/At it Te[0.000278.0.000556]

0 otherwise.

hit—1) = {

The adjoint thermal load set is defined by :
Axit—1) = E(x,t—=0M,(x) in Bx[0.1].

All other adjoint loads arc zero.

The variations with respect to the wall thickness are found for all the above functionals
by moving the nodes on the inner surface of the cylinders radially inward. The explicit
sensitivity expressions require one adjoint solution for cach of the four functionals in
addition to the actual solution for the current design. As previously mentioned. the adjoint
solutions arc found by asscmbling the adjoint load vectors and peforming back-substitutions
on the existing decomposed stiffness matrices (one for the thermal analysis and one for the
elastic) which were used for the real analyses. The sensitivities with respect to variations of
cach node coordinate are then computed as discussed in Section 4. Finally, the varnation of
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each functional G due to perturbations in wall thickness is determined by the chain rule

G ¢G X
5G = — R = SR 122
00 =7 °R=zx. %r (12

where R refers to the wall thickness and X, are elements of the global node coordinate
vector that lie on the inner surface of the cylinders.

In a similar fashion. the variation of each functional G due to changes of the convection
coetticients is found from

°G
6G = — 5h, (123)
ch,

where i, 0 x = 1,2 are the convection coefficients of the outer and inner walls, respectively.
Note that the adjoint solutions required to compute cach ¢G/0X, are also used for the
calculation of the corresponding ¢G/Ch,.

To verify the adjoint sensitivity calculations, finite difference sensitivities were also
computed. The finite difference shape sensitivities are given by

’G _ G(R+AR)—G(R) ,
R™ T AR (124)

where AR represents a perturbation in the wall thickness. The finite difference sensitivitics
with respect to the convection cocflicients are computed in a stmilar manncer. Each finite
difference sensitivity caleulation requires one additional real analysis. Thus, the tinite differ-
ence sensitivities require considerably more computations than the adjoint sensitivities, as
the stitfness matrix needs to be reassembled and decomposed. In general, a range of values
for AR should be tested to ensure that reliable results are obtained (thus further increasing
the computational expense). As seen in Tortorelli and Haber (1989) Targe and small mag-
nitudes of AR lead to truncation and round-off errors, respectively.

The sensitivities of the four functionals with respect to variations in wall thickness arc
sltown in Fable 1. The results from finite difference sensitivity calculations for six values of
ARarcalsoincluded in the table. Similarly, the adjoint sensitivities with respect to variations
in heat transfer coeflicients on the coolant side and the gascous side of the cylinders are
shown in Tables 2 and 3, along with their corresponding finite diftference results,

As seen from the tables, an increased wall thickness increases the values of G, and G,
and decreases the values of G, and G, An increase in the value of the outer convective
coellicient will increase the value of Gy and decrease the remaining functional values.
Increases in the value of the inner convective coeflicient will increase G, and decrease the
other functionals. By comparing the magnitudes of the sensitivitics, it is seen that the inner
convective coeflicient is the most influential, followed by the wall thickness and then
the outer convective coeflicient. Finally, it is noted that in ail cases the finite difference
sensitivities are in excellent agreement with the adjoint sensitivitics.

Table 1. Sensitivities due to variation in wall thickness

oG, G, oG, G,
R ‘R R ‘R
x 10! x 10" x 10

Adjoint 3.9952296 = 34186460 1.0334289 —8.7993684
Finite AR =0.le+00 39343140 —3.3970654 11147598 — 8.6988060
difference AR = 0.1¢ -0l 39890376 —~ 34165872 1.0420779 —~8.7901236
AR =0.1¢-02 3.9946104 — 34184412 1.0342990 - 8.7984540
AR =(0.1¢-03 3.9951684 -~ 34186255 1.0335157 —8.7992784
AR =0.1e~04 3.9952260 —~3.4186438 1.0334379 —8.7993612

AR =0.1c-05 3.9952224 ~3.4186492 1.0334311 —~8.7993684
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Table 2. Sensitivities due to variations in A on outer surface

G, G, ‘G, G,
ch ch ch ch
x10°7 x 1077 x 107 x 104

Adjoint —2.1521062 —3.0618172 [.1303861 — 11066446
Finite Ah =0.1le+02 —2.1513528 -3.0607534 11301991 —1.1062627
ditference Ah=0.1e—03 —2.1513528 —3.0607534 [.1301991 —1.1062627
Ah=0.1¢—-04 —-2.1518722 ~3.0617643 1.1307438 —1.1066468
Ah =0.1e =05 —2.1506425 —~3.0614436 11313982 ~1.1062868
Ah =0.1e-06 —2.1365812 —3.0596482 11426749 — 11042730
Al =0.1e~-07 —2.0034021 —3.0260674 11208708 —~1.0757019

Table 3. Sensitivities due to variations in h on inner surface

G, G, ¢G, G,
ch ch ch ch
x107? x 1073 x107* x10-*

Adjoint - 5.7166388 3.9972960 —2.3497380 —1.5708049
Finite Al =0.le+02 -5.7206916 3.9893220 —2.4421287 —1.5645337
ditference Al =0.1e-03 —-5.7171348 3.9964968 - 24489763 ~1.5701914
Ah =0.le-04 —5.7167784 3.9972168 —2.4496617 —1.5707433
Ah = 0.1e-05 ~5.7167424 3.9972888 —2.4497305 —1.5707988
Ah =0.1e-06 —-5.7167388 3.9972960 - 2.4497373 -~ 1.5708042
Ah=0.1¢-07 —5.7167388 3.9972960 —-2.4497370 ~ [.5708045

7. CONCLUSION

Design sensitivities have been formulated for the lincar, dynamic, thermoclastic
problem. The variation of a general performance functional was determined with respect
to variations in the explicit design fields including shape. In addition to the fully coupled
problem, sensitivitics for dynamic-uncoupled, quasi-static-uncoupled, and steady-state
problems were also derived. In all cases, the reciprocal theorem was used to derive the
sensitivitics, the convolution operator was implemented to incorporate transients, and
domain parameterization was used to describe shape variations.

In an example problem, the finite element method was used to evaluate the real
response, adjoint response, and design sensitivitics. The sensitivities of stress and dis-
placement based functionals were found with respect to changes in shape and load data. In
all cases, excellent agreement was obtained between the adjoint sensitivity calculations and
the computationally expensive finite difference sensitivitics. This agreement indicates that
accurate sensitivitics for the finite element model were obtained. As is always the casce, the
analyst must ensure that the finite element solution is sufficiently accurate, so that the
computed sensitivities are meaningful.
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